Thursday, August 20, 2015

High-Tech Trash Will your discarded TV end up in a ditch in Ghana?

Trash Feature

High-Tech Trash

Will your discarded TV end up in a ditch in Ghana?

By Chris Carroll
National Geographic Staff
Photograph by Peter Essick
June is the wet season in Ghana, but here in Accra, the capital, the morning rain has ceased. As the sun heats the humid air, pillars of black smoke begin to rise above the vast Agbogbloshie Market. I follow one plume toward its source, past lettuce and plantain vendors, past stalls of used tires, and through a clanging scrap market where hunched men bash on old alternators and engine blocks. Soon the muddy track is flanked by piles of old TVs, gutted computer cases, and smashed monitors heaped ten feet (three meters) high. Beyond lies a field of fine ash speckled with glints of amber and green—the sharp broken bits of circuit boards. I can see now that the smoke issues not from one fire, but from many small blazes. Dozens of indistinct figures move among the acrid haze, some stirring flames with sticks, others carrying armfuls of brightly colored computer wire. Most are children.
Choking, I pull my shirt over my nose and approach a boy of about 15, his thin frame wreathed in smoke. Karim says he has been tending such fires for two years. He pokes at one meditatively, and then his top half disappears as he bends into the billowing soot. He hoists a tangle of copper wire off the old tire he’s using for fuel and douses the hissing mass in a puddle. With the flame retardant insulation burned away—a process that has released a bouquet of carcinogens and other toxics—the wire may fetch a dollar from a scrap-metal buyer.
Another day in the market, on a similar ash heap above an inlet that flushes to the Atlantic after a downpour, Israel Mensah, an incongruously stylish young man of about 20, adjusts his designer glasses and explains how he makes his living. Each day scrap sellers bring loads of old electronics—from where he doesn’t know. Mensah and his partners—friends and family, including two shoeless boys raptly listening to us talk—buy a few computers or TVs. They break copper yokes off picture tubes, littering the ground with shards containing lead, a neurotoxin, and cadmium, a carcinogen that damages lungs and kidneys. They strip resalable parts such as drives and memory chips. Then they rip out wiring and burn the plastic. He sells copper stripped from one scrap load to buy another. The key to making money is speed, not safety. “The gas goes to your nose and you feel something in your head,” Mensah says, knocking his fist against the back of his skull for effect. “Then you get sick in your head and your chest.” Nearby, hulls of broken monitors float in the lagoon. Tomorrow the rain will wash them into the ocean.
People have always been proficient at making trash. Future archaeologists will note that at the tail end of the 20th century, a new, noxious kind of clutter exploded across the landscape: the digital detritus that has come to be called e-waste.
More than 40 years ago, Gordon Moore, co-founder of the computer-chip maker Intel, observed that computer processing power roughly doubles every two years. An unstated corollary to “Moore's law” is that at any given time, all the machines considered state-of-the-art are simultaneously on the verge of obsolescence. At this very moment, heavily caffeinated software engineers are designing programs that will overtax and befuddle your new turbo-powered PC when you try running them a few years from now. The memory and graphics requirements of Microsoft’s recent Vista operating system, for instance, spell doom for aging machines that were still able to squeak by a year ago. According to the U.S. Environmental Protection Agency, an estimated 30 to 40 million PCs will be ready for “end-of-life management” in each of the next few years.
Computers are hardly the only electronic hardware hounded by obsolescence. A switchover to digital high-definition television broadcasts is scheduled to be complete by 2009, rendering inoperable TVs that function perfectly today but receive only an analog signal. As viewers prepare for the switch, about 25 million TVs are taken out of service yearly. In the fashion-conscious mobile market, 98 million U.S. cell phones took their last call in 2005. All told, the EPA estimates that in the U.S. that year, between 1.5 and 1.9 million tons of computers, TVs, VCRs, monitors, cell phones, and other equipment were discarded. If all sources of electronic waste are tallied, it could total 50 million tons a year worldwide, according to the UN Environment Programme.
So what happens to all this junk?
In the United States, it is estimated that more than 70 percent of discarded computers and monitors, and well over 80 percent of TVs, eventually end up in landfills, despite a growing number of state laws that prohibit dumping of e-waste, which may leak lead, mercury, arsenic, cadmium, beryllium, and other toxics into the ground. Meanwhile, a staggering volume of unused electronic gear sits in storage—about 180 million TVs, desktop PCs, and other components as of 2005, according to the EPA. Even if this obsolete equipment remains in attics and basements indefinitely, never reaching a landfill, this solution has its own, indirect impact on the environment. In addition to toxics, e-waste contains goodly amounts of silver, gold, and other valuable metals that are highly efficient conductors of electricity. In theory, recycling gold from old computer motherboards is far more efficient and less environmentally destructive than ripping it from the earth, often by surface-mining that imperils pristine rain forests.
Currently, less than 20 percent of e-waste entering the solid waste stream is channeled through companies that advertise themselves as recyclers, though the number is likely to rise as states like California crack down on landfill dumping. Yet recycling, under the current system, is less benign than it sounds. Dropping your old electronic gear off with a recycling company or at a municipal collection point does not guarantee that it will be safely disposed of. While some recyclers process the material with an eye toward minimizing pollution and health risks, many more sell it to brokers who ship it to the developing world, where environmental enforcement is weak. For people in countries on the front end of this arrangement, it’s a handy out-of-sight, out-of-mind solution.
Many governments, conscious that electronic waste wrongly handled damages the environment and human health, have tried to weave an international regulatory net. The 1989 Basel Convention, a 170-nation accord, requires that developed nations notify developing nations of incoming hazardous waste shipments. Environmental groups and many undeveloped nations called the terms too weak, and in 1995 protests led to an amendment known as the Basel Ban, which forbids hazardous waste shipments to poor countries. Though the ban has yet to take effect, the European Union has written the requirements into its laws.
The EU also requires manufacturers to shoulder the burden of safe disposal. Recently a new EU directive encourages “green design” of electronics, setting limits for allowable levels of lead, mercury, fire retardants, and other substances. Another directive requires manufacturers to set up infrastructure to collect e-waste and ensure responsible recycling—a strategy called take-back. In spite of these safeguards, untold tons of e-waste still slip out of European ports, on their way to the developing world.
In the United States, electronic waste has been less of a legislative priority. One of only three countries to sign but not ratify the Basel Convention (the other two are Haiti and Afghanistan), it does not require green design or take-back programs of manufacturers, though a few states have stepped in with their own laws. The U.S. approach, says Matthew Hale, EPA solid waste program director, is instead to encourage responsible recycling by working with industry—for instance, with a ratings system that rewards environmentally sound products with a seal of approval. “We’re definitely trying to channel market forces, and look for cooperative approaches and consensus standards,” Hale says.
The result of the federal hands-off policy is that the greater part of e-waste sent to domestic recyclers is shunted overseas.
“We in the developed world get the benefit from these devices,” says Jim Puckett, head of Basel Action Network, or BAN, a group that opposes hazardous waste shipments to developing nations. “But when our equipment becomes unusable, we externalize the real environmental costs and liabilities to the developing world.”
Asia is the center of much of the world’s high-tech manufacturing, and it is here the devices often return when they die. China in particular has long been the world’s electronics graveyard. With explosive growth in its manufacturing sector fueling demand, China’s ports have become conduits for recyclable scrap of every sort: steel, aluminum, plastic, even paper. By the mid-1980s, electronic waste began freely pouring into China as well, carrying the lucrative promise of the precious metals embedded in circuit boards.
Vandell Norwood, owner of Corona Visions, a recycling company in San Antonio, Texas, remembers when foreign scrap brokers began trolling for electronics to ship to China. Today he opposes the practice, but then it struck him and many other recyclers as a win-win situation. “They said this stuff was all going to get recycled and put back into use,” Norwood remembers brokers assuring him. “It seemed environmentally responsible. And it was profitable, because I was getting paid to have it taken off my hands.” Huge volumes of scrap electronics were shipped out, and the profits rolled in.
Any illusion of responsibility was shattered in 2002, the year Puckett’s group, BAN, released a documentary film that showed the reality of e-waste recycling in China. Exporting Harm focused on the town of Guiyu in Guangdong Province, adjacent to Hong Kong. Guiyu had become the dumping ground for massive quantities of electronic junk. BAN documented thousands of people—entire families, from young to old—engaged in dangerous practices like burning computer wire to expose copper, melting circuit boards in pots to extract lead and other metals, or dousing the boards in powerful acid to remove gold.
China had specifically prohibited the import of electronic waste in 2000, but that had not stopped the trade. After the worldwide publicity BAN’s film generated, however, the government lengthened the list of forbidden e-wastes and began pushing local governments to enforce the ban in earnest.

Monday, August 17, 2015

U.S. government houses veterans in dilapidated building filled with mold, bedbugs and disease-carrying rats

It's becoming clear -- honorable US service men and women are becoming nothing more than expendable numbers filed away in a system set up to profit off their service, rather than respect and honor their service. For those who volunteer to serve, it's about defending the country's freedom and values, but as they begin to take orders, many realize that they are just being used. Some soldiers feel like they are nothing but mere pawns in a global industrial chess match. Stamped through one at a time, brave men and women are turned into fodder for the gears of a machine that no longer represents true national defense. Soldiers' valiant sacrifices are now swallowed up in an ongoing spiral of profitable, perpetual conflict abroad. When they are sent home, many soldiers are put on psychotic medications and some veterans are housed in the most despicable conditions as they age.

Today, military men and women return home in significant numbers with post-traumatic stress disorder. A shocking number of these returning veterans commit suicide today -- a sure sign that something is wrong with the foreign policy that is executed today. Why are veterans ending their life when they return home?

In connection with that, US military men and women return home only to be subjected to heinous psychotic medications and lethal combinations of painkillers. Effective mind-body healing protocols are disregarded as soldiers are prescribed bottle after bottle of prescription drugs to mask the pain. Does today's foreign policy even care about soldiers at all? What does the American flag really stand for today? In what ways are we burning the flag and the Constitution every day, metaphorically speaking? Respecting veterans goes deeper than just saluting a flag in vain and pledging allegiance to a country without understanding the nature of its foreign policy.

Veterans living in poor conditions in New York City, plagued by rats, mold, potential disease

To see how veterans are mistreated and disrespected, look no further than a veteran's home in New York City. In a building that holds 175 units on E. 119th St. near Madison Ave., over a hundred veterans get nothing for their service but disgusting living quarters -- a dilapidated dump filled with cockroaches, bedbugs, rats, mold and frequent mechanical failures. That's the report coming from several veterans living at the New York City-owned East Harlem building.

57-year-old Army veteran Walter King says he's been housed in the building for six years. "To treat us like we're second-class citizens... it's like our service didn't mean nothing," he said.

City records show that there have been nine violations at the East Harlem building -- violations for mice, roaches, bedbugs, water bugs and a broken ventilation system. On top of that, veterans and residents alike have lodged 54 complaints with the city Department of Housing and Preservation in the past year for leaks, lack of heating, mold and pests.

When investigators visited where veterans were housed, they found huge cockroaches laying in the hallways and mold growing across the ceiling of a shower room. 61-year-old veteran Michael Barnes said he caught 15 mice this year alone. "It makes us feel like people don't care," he said.
The angered veterans report that the trash compactors don't even work outside the building, so large waste cans are brought in only to welcome in pests on a weekly basis. Bed bugs infest many rooms. Army veteran Vincent Killen says he was hospitalized after a rat bit him in his sleep.

The place is not only infested; it's also breaking down mechanically. The angered veterans report that one of the elevators breaks down weekly. One veteran returned home one night to a sewage backup on his second-floor unit. Now the floor tiles buckle, says veteran Killen, who has lived in the building for 17 years.

The dilapidated building, which houses over a hundred veterans, is owned by the city Department of Homeless Services and managed by Volunteers of America, an organization that provides housing for veterans. Why are honorable veterans living in such disturbing conditions, right in the very country they fought and died for?

It's a sure sign that the military-industrial complex is so overextended overseas that it cannot even take care of its own veterans living within US borders.


Learn more:

Asbestos As healing Crystals…AGAIN, be careful!

Back in 2012 we found a supplier to crystal healing shops supplying raw asbestos rock to smaller shops. These rocks were being sold as healing rock which could be carved by the purchaser and were supposedly good for MS and lung diseases ( I kid you not). We contacted WH & S and AQIS and they attended to it. Following that we looked in crystal healing shops whenever we could and found white asbestos (Chrysotile) being sold at the Fremantle markets in Perth and markets in Darwin, Hobart and Canberra. Well time has gone on and I haven’t seen much of this lately until the last school holidays I was out at Nanango (QLD) with the kids who were coming with us to a couple of jobs near Kingaroy. Stopped in to the markets and look what I found being sold….Nanango July2015 (48)Nanango July2015 (57)
What got me was the lady running the stall knew it was asbestos and claimed she was allowed to sell it, she wasn’t just selling these pieces but large spheres and crystal shapes as well as raw rock for people to carve. I was astounded and told her so, she was going to contact her supplier as she didn’t believe me. I had previously researched this and if you have a look on the net fibrous Chrysotile rock is being sold world wide as a healing Crystal. Here’s a couple awesome excerpts from people promoting this garbage-
“Chrysotile in Serpentine
The ‘Stone of Life’, holds energies to help the being to connect with past lives if any, and also life’s past happenings in itself. As well as being very good to stimulate the inner senses, and in helping the being to open up to the soul self.
A stone that helps to strengthen and better the bodies vascular system, as well as helping to improve eyesight, especially with the eye focus. Chrysotile in Serpentine is a very wise stone with many stories to tell and many stories yet to learn. It can be seen as a special gift for many generations.
Here is a mixture of two highly intuitive and spiritually natured stones. Some may find the energy a bit over stimulating and may wish to only use it in small doses rather than all the time. It is not wise for this stone to be used with the being who is easily anxious, paranoid or have mental health conditions such as schizophrenia.”
SERIOUSLY! in this case if you are paranoid or have a mental health condition it may just save your life and stop you from buying these stones. Anyhow I contacted ASEA and I’m happy to say they are looking into it. 

Sunday, August 16, 2015

How to dispose of paint properly

If your spring cleaning plans include tackling the garage, you might be wondering what to do with those partially filled cans of paint. 
Sure, we need to keep a few for touch-ups, but after the colors in our home have changed, chances are many cans will never get used. 
What can you do with old paint? First, I hope we all know by now that anything poured down a storm drain ends up in the ocean. And cans of paint cannot be placed in the regular trash or recycle bins. 

However, if there's a small amount of water-based paint left in a can, you can open it. Allow it to dry completely. Then throw the can into your regular trash. No wet paint should ever go into the trash. 
Oil-based paint and solvents such as mineral spirits are especially toxic and are considered hazardous-waste materials. These must be taken to a designated site for proper disposal. 
Although the production of oil-based paints is being phased out, many of us probably still have a can of old semi-gloss we used for painting trim. But it's doubtful that there would be any lead-based products still hanging around your garage, because the manufacture of lead-based paint stopped in the late 1970s. 
But it's really hard to decipher what's actually in some of those old cans that have been splattered with paint. So if you're unsure what type of paint is in the can, it's best to bring it to one of the hazardous-waste sites for disposal. 
The Orange County Household Hazardous Waste Collection Centers accept latex- and oil-based paint, along with a host of other items including antifreeze, batteries, computers and other electronics, fertilizers, herbicides, hobby supplies, pesticides and used motor oil. 
Disposal is free to all Orange County residents. These regional centers are open Tuesdays through Saturdays from 9 a.m. to 3 p.m., and are closed on rainy days and major holidays: 
  • Anaheim: CVT Public Recycling Center, 1071 N. Blue Gum St. 
  • Hunntington Beach: Rainbow Disposal facility, 17121 Nichols St. 
  • Irvine: 6411 Oak Canyon. 
  • San Juan Capistrano: Prima Deshecha Landfill, 32250 La Pata Ave.
Here's how it works: 
Follow the signage into the facility. Attendants will direct you to where to stop the car. State regulations require you to remain in your vehicle when delivering hazardous waste and to refrain from smoking. If you wish to have a container returned to you, notify the attendant immediately. Some containers may not be returnable. 
You will be given a card to fill out with your name and address and may be required to show proof of Orange County residency. 
Attendants wearing white protective suits will remove the hazardous materials from your trunk. When you visit the sites in Anaheim, Huntington Beach and Irvine, check out the Stop & Swap where you can get used home, yard and automotive-care products for free. For more information and directions, go to 714-834-6752 or
Contact the writer: or 714-796-5020

Transport of Radioactive Materials

(Updated July 2015)
  • About 20 million consignments of all sizes containing radioactive materials are routinely transported worldwide annually on public roads, railways and ships.
  • These use robust and secure containers. At sea, they are generally carried in purpose-built ships.
  • Since 1971 there have been more than 20,000 shipments of used fuel and high-level wastes (over 80,000 tonnes) over many million kilometres.
  • There have been accidents over the years, but never one in which a container with highly radioactive material has been breached, or has leaked.
About 20 million consignments of radioactive material (which may be either a single package or a number of packages sent from one location to another at the same time) take place around the world each year. Radioactive material is not unique to the nuclear fuel cycle and only about 5% of the consignments are fuel cycle related. Radioactive materials are used extensively in medicine, agriculture, research, manufacturing, non-destructive testing and minerals' exploration.
International regulations for the transport of radioactive material have been published by the International Atomic Energy Agency (IAEA) since 1961. These regulations have been widely adopted into national regulations, as well as into modal regulations, such as the International Maritime Organisation’s (IMO) Dangerous Goods Code. Regulatory control of shipments of radioactive material is independent of the material's intended application. 
Nuclear fuel cycle facilities are located in various parts of the world and materials of many kinds need to be transported between them. Many of these are similar to materials used in other industrial activities. However, the nuclear industry's fuel and waste materials are radioactive, and it is these 'nuclear materials' about which there is most public concern.
Nuclear materials have been transported since before the advent of nuclear power over fifty years ago. The procedures employed are designed to ensure the protection of the public and the environment both routinely and when accidents occur. For the generation of a given quantity of electricity, the amount of nuclear fuel required is very much smaller than the amount of any other fuels. Therefore, the conventional risks and environmental impacts associated with fuel transport are greatly reduced with nuclear power.
In the USA one percent of the 300 million packages of hazardous material shipped each year contain radioactive materials. Of this, about 250,000 contain radioactive wastes from US nuclear power plants, and 25 to 100 packages contain used fuel. Most of these are in robust 125-tonne Type B casks carried by rail, each containing 20 tonnes of used fuel.

Materials being transported

Transport is an integral part of the nuclear fuel cycle. There are some 430 nuclear power reactors in operation in 32 countries but uranium mining is viable in only a few areas. Furthermore, in the course of over forty years of operation by the nuclear industry, a number of specialised facilities have been developed in various locations around the world to provide fuel cycle services. Hence there is a need to transport nuclear fuel cycle materials to and from these facilities. Indeed, most of the material used in nuclear fuel is transported several times during its its progress through the fuel cycle. Transport is frequently international, and often over large distances. Any substantial quantities of radioactive materials are generally transported by specialised transport companies.
The term 'transport' is used in this document only to refer to the movement of material between facilities, i.e. through areas outside such facilities. Most consignments of nuclear fuel material occur between different stages of the cycle, but occasionally material may be transported between similar facilities. When the stages are directly linked (such as mining and milling), the facilities for the different stages are usually on the same site, and no transport is then required.
With very few exceptions, nuclear fuel cycle materials are transported in solid form. The following table shows the principal nuclear material transport activities:
MiningMillingOreRare: usually on the same site
MillingConversionUranium oxide concentrate ('Yellowcake')Usually 200-litre drums in standard 6m transport container
ConversionEnrichmentUranium hexafluoride
Special UF6 containers, type 48Y
EnrichmentFuel fabricationEnriched UF6Special UF6 containers, type 30B
Fuel fabricationPower generationFresh (unused) fuel 
Power generationUsed fuel storageused fuelAfter on-site storage, large Type B casks
Used fuel storageDisposal*used fuelLarge Type B casks
Used fuel storageReprocessingused fuel 
ReprocessingConversionUranium oxideCalled reprocessed uranium (RepU)
ReprocessingFuel fabricationPlutonium oxide 
ReprocessingDisposal*Fission productsVitrified (incorporated into glass)
All facilitiesStorage/disposalWaste materialsSometimes on the same site
* Not yet taking place
Although some waste disposal facilities are located adjacent to the facilities that they serve, utilising one disposal site to manage the wastes from several facilities usually reduces environmental impacts. When this is the case, transport of the wastes from the facilities to the disposal site will be required.

Classification of radioactive wastes

There are several systems of nomenclature in use, but the following is generally accepted:
  • Exempt waste – excluded from regulatory control because radiological hazards are negligible.
  • Low-level waste (LLW) – contains enough radioactive material to require action for the protection of people, but not so much that it requires shielding in handling or storage.
  • Intermediate-level waste (ILW) – requires shielding. If it has more than 4000 Bq/g of long-lived (over 30 year half-life) alpha emitters it is categorised as 'long-lived' and requires more sophisticated handling and disposal.
  • High-level waste (HLW) – sufficiently radioactive to require both shielding and cooling,
    generates >2 kW/m3 of heat and has a high level of long-lived alpha-emitting isotopes.


The principal assurance of safety in the transport of nuclear materials is the design of the packaging, which must allow for foreseeable accidents. The consignor bears primary responsibility for this. Many different nuclear materials are transported and the degree of potential hazard from these materials varies considerably. Different packaging standards have been developed by the IAEA according to the charactristics and potential hazard posed by the different types of nuclear material, and regardless of the mode of transport.
Ordinary industrial containers are used for low-activity material such as uranium oxide concentrate shipped from mines – U3O8. About 36 standard 200-litre drums fit into a standard 6-metre transport container. They are also used for low-level wastes within countries.
'Type A' packages are designed to withstand minor accidents and are used for medium-activity materials such as medical or industrial radioisotopes. 
Natural uranium is usually shipped to enrichment plants in type 48Y cylinders, each holding about 12.5 tonnes of uranium hexafluoride (8.4 tU). These cylinders are then used for long-term storage of DU, typically at the enrichment site. Enriched uranium is shipped to fuel fabricators in type 30B cylinders, each holding 2.27 t UF6 (1.54 tU).
Containers for high-level waste (HLW), used fuel and MOX fuel are robust and very secure casks known as 'Type B' packages. They range from drum-size to truck-size and maintain shielding from gamma and neutron radiation, even under extreme accident conditions. Designs are certified by national authorities. There are over 150 kinds of Type B packages, and the larger ones cost some US$1.6 million each.
In France alone, there are some 750 shipments each year of Type B packages.  This is in relation to 15 million shipments classified as 'dangerous goods', 300,000 of which are radioactive materials of some kind.
Smaller amounts of high-activity materials (including plutonium) transported by aircraft are be in 'Type C' packages, which give even greater protection in all respects than Type B packages in accident scenarios. They can survive being dropped from an aircraft at cruising altitude. 
An example of a Type B shipping package is Holtec’s HI-STAR 80 cask (STAR = storage, transport and repository), a multi-layered steel cylinder which holds 12 PWR or 32 BWR high-burnup used fuel assemblies (above 45 GWd/t) which have had cooling times as short as 18 months. The HI-STAR 60 can transport 12 PWR used fuel assemblies, and two aluminium impact limiters. The HI-STAR 180 was the first one licensed to transport high-burnup fuel, and holds 32 or 37 PWR used fuel assemblies. The HI-STAR 190 cask has the world’s highest heat load capacity, at 38 kW, and is to be used domestically in Ukraine for PWR fuel. The HI-STAR 100 is based on a sealed multi-purpose canister containing the fuel which can be transferred to HI-STORM storage systems, exchanging one overpack for another.
In the UK 47- or 53-tonne rectangular Type B flasks have long been used to transport Magnox and AGR fuel, which is held in internal skips.

Radiation protection

When radioactive materials, including nuclear materials, are transported, it is important to ensure that radiation exposure of both those involved in the transport of such materials and the general public along transport routes is limited. Packaging for radioactive materials includes, where appropriate, shielding to reduce potential radiation exposures. In the case of some materials, such as fresh uranium fuel assemblies, the radiation levels are negligible and no shielding is required. Other materials, such as used fuel and high-level waste, are highly radioactive and purpose-designed containers with integral shielding are used. To limit the risk in handling of highly radioactive materials, dual-purpose containers (casks), which are appropriate for both storage and transport of used nuclear fuel, are often used.
As with other hazardous materials being transported, packages of radioactive materials are labelled in accordance with the requirements of national and international regulations. These labels not only indicate that the material is radioactive, by including a radiation symbol, but also give an indication of the radiation field in the vicinity of the package.
Personnel directly involved in the transport of radioactive materials are trained to take appropriate precautions and to respond in case of an emergency.

Environmental protection

Packages used for the transport of radioactive materials are designed to retain their integrity during the various conditions that may be encountered while they are being transported thus ensuring that an accident will not have any major consequences. Conditions which packages are tested to withstand include: fire, impact, wetting, pressure, heat and cold. Packages of radioactive material are checked prior to shipping and, when it is found to be necessary, cleaned to remove contamination.
Although not required by transport regulations, the nuclear industry chooses to undertake some shipments of nuclear material using dedicated, purpose-built transport vehicles or vessels.

Regulation of transporta

Since 1961 the International Atomic Energy Agency (IAEA) has published advisory regulations for the safe transport of radioactive material. These regulations have come to be recognised throughout the world as the uniform basis for both national and international transport safety requirements in this area. Requirements based on the IAEA regulations have been adopted in about 60 countries, as well as by the International Civil Aviation Organisation (ICAO), the International Maritime Organisation (IMO), and regional transport organisations.
PNTL vessel  
The IAEA has regularly issued revisions to the transport regulations in order to keep them up to date. The latest set of regulations is published as TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2009 Edition.
The objective of the regulations is to protect people and the environment from the effects of radiation during the transport of radioactive material.
Protection is achieved by:
  • Containment of radioactive contents.
  • Control of external radiation levels.
  • Prevention of criticality.
  • Prevention of damage caused by heat.
The fundamental principle applied to the transport of radioactive material is that the protection comes from the design of the package, regardless of how the material is transported.

Transport of uranium oxide from mines and uranium hexafluoride

Uranium oxide concentrate, sometimes called yellowcake, is transported from the mines to conversion plants in 200-litre drums packed into normal shipping containers. No radiation protection is required beyond having the steel drums clean and within the shipping container.
The importance of this is indicated by the fact that 80% of uranium is mined in five countries, only one of which (Canada) uses uranium for nuclear power.
In Australia, over more than three decades to 2014, 11,000 shipping containers with drums of U3O8 were moved from mines to ports with no incident affecting public health.
To and from enrichment plants, the uranium is in the form of uranium hexafluoride (UF6), which again is barely radioactive but has significant chemical toxicity. It is in special containers, which also function for storage.

Transport of uranium fuel assemblies

Uranium fuel assemblies are manufactured at fuel fabrication plants. The fuel assemblies are made up of ceramic pellets formed from pressed uranium oxide that has been sintered at a high temperature (over 1400°C). The pellets are aligned within long, hollow, metal rods, which in turn are arranged in the fuel assemblies, ready for introduction into the reactor. 
Different types of reactors require different types of fuel assembly, so when the fuel assemblies are transported from the fuel fabrication facility to the nuclear power reactor, the contents of the shipment will vary with the type of reactor receiving it.
In Western Europe, Asia and the US, the most common means of transporting uranium fuel assemblies is by truck. A typical truckload supplying a light water reactor contains 6 tonnes of fuel. In the countries of the former Soviet Union, rail transport is most often used. Intercontinental transports are mostly by sea, though occasionally transport is by air.
The annual operation of a 1000 MWe light water reactor requires an average fuel load of 27 tonnes of uranium dioxide, containing 24 tonnes of enriched uranium, which can be transported in 4 to 5 trucks.
The precision-made fuel assemblies are transported in packages specially constructed to protect them from damage during transport. Uranium fuel assemblies have a low radioactivity level and radiation shielding is not necessary.
Fuel assemblies contain fissile material and criticality is prevented by the design of the package, (including the arrangement of the fuel assemblies within it, and limitations on the amount of material contained within the package), and on the number of packages carried in one shipment.

Transport of LLW and ILW

Low-level and intermediate-level wastes (LLW and ILW) are generated throughout the nuclear fuel cycle and from the production of radioisotopes used in medicine, industry and other areas.  The transport of these wastes is commonplace and they are safely transported to waste treatment facilities and storage sites.
Low-level radioactive wastes are a variety of materials that emit low levels of radiation, slightly above normal background levels. They often consist of solid materials, such as clothing, tools, or contaminated soil. Low-level waste is transported from its origin to waste treatment sites, or to an intermediate or final storage facility.
A variety of radionuclides give low-level waste its radioactive character. However, the radiation levels from these materials are very low and the packaging used for the transport of low-level waste does not require special shielding.
Low-level wastes are transported in drums, often after being compacted in order to reduce the total volume of waste. The drums commonly used contain up to 200 litres of material. Typically, 36 standard, 200 litre drums go into a 6-metre transport container.  Low-level wastes are moved by road, rail, and internationally, by sea. However, most low-level waste is only transported within the country where it is produced.
The composition of intermediate-level wastes is broad, but they require shielding. Much ILW comes from nuclear power plants and reprocessing facilities.
Intermediate-level wastes are taken from their source to an interim storage site, a final storage site (as in Sweden), or a waste treatment facility. They are transported by road, rail and sea.
The radioactivity level of intermediate-level waste is higher than low-level wastes. The classification of radioactive wastes is decided for disposal purposes, not on transport grounds. The transport of intermediate-level wastes take into account any specific properties of the material, and requires shielding.
In the USA there had been 9000 road shipments of defence-related transuranic wastes for permanent disposal in the deep geological repository near Carlsbad, New Mexico, by October 2010, without any major accident or any release of radioactivity. Almost half the shipments were from the Idaho National Laboratory. The repository, known as the Waste Isolation Pilot Plant (WIPP), is about 700 m deep in a Permian salt formation. 

Transport of used nuclear fuel

When used fuel is unloaded from a nuclear power reactor, it contains: 96% uranium, 1% plutonium and 3% of fission products (from the nuclear reaction) as well as a small amount of transuranics.
Used fuel will emit high levels of both radiation and heat and so is stored in water pools adjacent to the reactor to allow the initial heat and radiation levels to decrease. Typically, used fuel is stored on site for at least five months before it can be transported, although it may be stored there long-term.
From the reactor site, used fuel is transported by road, rail or sea to either an interim storage site or a reprocessing plant where it will be reprocessed.
Used fuel assemblies are shipped in Type B casks which are shielded with steel, or a combination of steel and lead, and can weigh up to 110 tonnes when empty. A typical transport cask holds up to 6 tonnes of used fuel.
Since 1971 there have been some 7000 shipments of used fuel (over 80 000 tonnes) over many million kilometres with no property damage or personal injury, no breach of containment, and very low dose rate to the personnel involved (e.g. 0.33 mSv/yr per operator at La Hague). This includes 40,000 tonnes of used fuel shipped to Areva's La Hague reprocessing plant, at least 30,000 tonnes of mostly UK used fuel shipped to UK's Sellafield reprocessing plant, 7040 t used fuel in over 160 shipments from Japan to Europe by sea (see below) and over 4500 tonnes of used fuel shipped around the Swedish coast. In the USA naval spent fuel is routinely shipped by rail to Idaho National Laboratory.
Some 300 sea voyages have been made carrying used nuclear fuel or separated high-level waste over a distance of more than 8 million kilometres. The major company involved has transported over 4000 casks, each of about 100 tonnes, carrying 8000 tonnes of used fuel or separated high-level wastes. A quarter of these have been through the Panama Canal.
In Sweden, more than 80 large transport casks are shipped annually to a central interim waste storage facility called CLAB. Each 80 tonne cask has steel walls 30 cm thick and holds 17 BWR or 7 PWR fuel assemblies. The used fuel is shipped to CLAB after it has been stored for about a year at the reactor, during which time heat and radioactivity diminish considerably. Some 6000 tonnes of used fuel had been shipped to CLAB by mid-2015, much of it around the coast by ship.
Shipments of used fuel from Japan to Europe for reprocessing used 94-tonne Type B casks, each holding a number of fuel assemblies (e.g. 12 PWR assemblies, total 6 tonnes, with each cask 6.1 metres long, 2.5 metres diameter, and with 25 cm thick forged steel walls). More than 160 of these shipments took place from1969 to the 1990s, involving more than 4000 casks, and moving several thousand tonnes of highly radioactive used fuel – 4200t to UK and 2940t to France.
Within Europe, used fuel in casks has often been carried on normal ferries, e.g. across the English Channel.
Canada’s Nuclear Waste Management Organization has published a paper showing spent nuclear fuel shipments worldwide:
  • Canada: 5 per year by road.
  • USA: 3000 up to 2013 by road, rail and ship.
  • Sweden: 40 per year by ship.
  • UK: 300 per year by rail.
  • France: 250 per year by rail.
  • Germany: 40 per year by rail.
  • Japan: 200 to 2013 by ship.

Transport of plutonium

Plutonium is separated during the reprocessing of used fuel. It is normally then made into mixed oxide (MOX) fuel.
Plutonium is transported, following reprocessing, as an oxide powder since this is its most stable form.  It is insoluble in water and only harmful to humans if it enters the lungs.
Plutonium oxide is transported in several different types of sealed packages and each can contain several kilograms of material. Criticality is prevented by the design of the package, limitations on the amount of material contained within the package, and on the number of packages carried on a transport vessel.  Special physical protection measures apply to plutonium consignments.
A typical transport consists of one truck carrying one protected shipping container. The container holds a number of packages with a total weight varying from 80 to 200 kg of plutonium oxide.
A sea shipment may consist of several containers, each of them holding between 80 to 200 kg of plutonium in sealed packages.

Transport of vitrified waste

The highly radioactive wastes (especially fission products) created in the nuclear reactor are segregated and recovered during the reprocessing operation. These wastes are incorporated in a glass matrix by a process known as 'vitrification', which stabilises the radioactive material.
The molten glass is then poured into a stainless steel canister where it cools and solidifies. A lid is welded into place to seal the canister. The canisters are then placed inside a Type B cask, similar to those used for the transport of used fuel.
The quantity per shipment depends upon the capacity of the transport cask. Typically a vitrified waste transport cask contains up to 28 canisters of glass.  
Return nuclear waste shipments from Europe to Japan since 1995 are of vitrified high-level wastes in stainless steel canisters. Up to 28 canisters (total 14 tonnes) are packed in each 94-tonne steel transport cask, the same as used for irradiated fuel. Over 1995-2007 twelve shipments were made from France of vitrified HLW comprising 1310 canisters containing almost 700 tonnes of glass. Return shipments from the UK commenced in 2010, and there will be about 11 shipments over at least eight years to move about 900 canisters.

Purpose-built ships

In 1993, the International Maritime Organisation (IMO) introduced the voluntary Code for the Safe Carriage of Irradiated Nuclear Fuel, Plutonium and High-Level Radioactive Wastes in Flasks on Board Ships (INF Code), complementing the IAEA Regulations. These complementary provisions mainly cover ship design, construction and equipment. The INF Code came into force in January 2001 and introduced advanced safety features for ships carrying used fuel, MOX or vitrified high-level waste.
There are at least five small purpose-built ships ranging from 1250 to 2200 tonnes (DWT), and four purpose-built ships almost of 3800 to 4900 tonnes (DWT), and able to carry class B casks and other materials. They conform to all relevant international safety standards, notably INF-3 (Irradiated Nuclear Fuel class 3) set by the IMO. This allows them to carry highly radioactive materials such as high-level wastes and used nuclear fuel, as well as mixed-oxide (MOX) fuel and plutonium.
The three largest ships belong to a British-based company Pacific Nuclear Transport Ltd (PNTL)*, and the Oceanic Pintail of 3865 tonnes deadweight and 104 metres long is owned by PNTL parent company International Nuclear Services Ltd (INS). They all have double hulls with impact-resistant structures between the hulls, together with duplication and separation of all essential systems to provide high reliability and also survivability in the event of an accident. Twin engines operate independently. Each ship can carry up to 20 or 24 transport casks. The three PNTL vessels now in service, Pacific HeronPacific Egret and Pacific Grebe, were launched in Japan in 2008, 2010 and 2010 respectively. They are 4916 tonnes deadweight and 104 metres long. Pacific Grebe carries mainly wastes, the other two mainly MOX fuel. Oceanic Pintail carries both. Earlier ships in the PNTL fleet mainly carried Japanese used fuel to Europe for reprocessing. The PNTL fleet has successfully completed more than 200 shipments with more than 2000 casks over some 40 years, covering about 10 million kilometres, without any incident resulting in release of radioactivity.
* PNTL is now owned by International Nuclear Services Ltd (INS, 62.5%), Japanese utilities (25%) and Areva (12.5%). INS is owned by the UK's Nuclear Decommissioning Authority.
VT Transport flask
PNTL diagram
Sweden’s SKB has commissioned a slightly larger replacement for its 1982 Sigyn, the Sigrid, launched in Romania in 2012 and designed by Damen Shipyards in Netherlands. It is used for moving used fuel from reactors to the interim waste storage facility. Sigrid is equipped with a double hull, four engines and redundant systems for safety and security. It was commissioned in 2013 and carried its first shipment in January 2014. Sigrid is 99.5 metres long and 18.6 metres wide, 1600 deadweight tonnes (DWT) and capable of carrying twelve nuclear waste casks. (Sigyn was 1250 tonnes deadweight and carried ten casks. It awaits further assignment.)
Rosatomflot is operating the 1620 deadweight tonne (DWT) Rossita, built in Italy and completed in 2011. It is designed for transporting spent nuclear fuel and materials of decommissioned nuclear submarines from Russian Navy bases in North-West Russia. It will be used on the Northern Sea Route, between Gremikha, Andreyeva Bay, Saida Bay, Severodvinsk and other places hosting facilities which dismantle nuclear submarines. Spent fuel is to be delivered to Murmansk for rail shipment to Mayak. Rosatomflot has the Serebryanka (1625 DWT, 102 m long, built 1974) already in service. The Imandra (2186 DWT, 130 m long, built 1980) is described as a floating technical base but is reported to be already in service transporting used fuel and wastes from the Nerpa shipyard and Gremikha to Murmansk.  (Andreyeva Bay is the primary spent nuclear fuel and radioactive waste storage facility for the Northern Fleet, some 60 km from the Norwegian border. It has about 21,000 spent nuclear fuel assemblies and about 12,000 m3of solid and liquid radioactive wastes.)
Rossita is an ice-class vessel and is designed to operate in harsh conditions of the Arctic. The ship is 84 m long and 14 m wide, with two engines, and has two isolated cargo holds holding up to 720 tonnes in total. On board, the radiation monitoring is carried out by both an automated multi-channel system and a set of portable instrumentation. The EUR 70 million vessel was given to Russia as part of Italy’s commitment to the G-8 partnership program for cleaning up naval nuclear wastes, and is designed to cover all needs in spent nuclear fuel and radwaste shipments in northwest Russia throughout the entire period of cleaning up these territories

Accident scenarios

There has never been any accident in which a Type B transport cask containing radioactive materials has been breached or has leaked.
For the radioactive material in a large Type B package in sea transit to become exposed, the ship's hold (inside double hulls) would need to rupture, the 25 cm thick steel cask would need to rupture, and the stainless steel flask or the fuel rods would need to be broken open. Either borosilicate glass (for reprocessed wastes) or ceramic fuel material would then be exposed, but in either case these materials are very insoluble.
The transport ships are designed to withstand a side-on collision with a large oil tanker. If the ship did sink, the casks will remain sound for many years and would be relatively easy to recover since instrumentation including location beacons would activate and monitor the casks.


a. Any goods that pose a risk to people, property and the environment are classified as dangerous goods, which range from paints, solvents and pesticides up to explosives, flammables and fuming acids, and are assigned to different classes ranging from 1 to 9 under the UN Model Regulations:
  • Class 1: Explosives
  • Class 2: Gases
  • Class 3: Flammable liquids
  • Class 4: Other flammables
  • Class 5: Oxidising agents
  • Class 6: Toxic and infectious substances
  • Class 7: Radioactive materials (regardless of degree of chemical or radiological hazard)
  • Class 8: Corrosives
  • Class 9: Miscellaneous: asbestos, lithium batteries, etc.
When transported these goods need to be packaged correctly as laid out in the various international and national regulations for each mode of transport, to ensure that they are carried safely to minimise the risk of an incident. [Back]

HVAC boot cleared of Asbestos in Los Angeles